一般社団法人 日本紫外線水処理技術協会
ニュースレター No.7

Japan UV Water Treatment Technology Association

JUVA

Newsletter
もくじ

顧問・役員

●巻頭言
01 済水プロセス改善のための紫外線照射法の適用について
 シンポジウム研究所所長
 秋田大学名誉教授
 篠原 拓男

●技術資料
02 新水道ビジョンにおける紫外線処理への期待
 厚生労働省 異質局
 水道課長
 宇仁貫 伸介

03 水道のクリプト対策としての紫外線照射と濃度管理に関するQ & A及び紫外線照射装置の導入状況
 公益財団法人 水道技術研究センター
主任研究員
 野口 満隆

09 クリプトスポリジウムのリスク評価方法と必要な除去率の推定について
 お茶の水女子大学
 大学院 教授
 大瀧 雅寛

13 「水銀に関する水俣条約」締結
紫外線ランプ（産業用ランプ）は
規制対象外
岩崎電気株式会社
技術本部 研究開発部
光応用研究課 課長
荒崎 里行

15 表流水への紫外線処理の適用
株式会社 東芝
水・環境エンジニアリングセンター
水・環境プロセス技術部
相馬 孝浩

19 導入事例紹介

●会員紹介
21 会員リスト

編集・発行
一般社団法人 日本紫外線水処理技術協会 広報委員会

顧問・役員（平成25年度）

会長
大垣真一郎（公益財団法人 水道技術研究センター 理事長）

副会長
伊藤 博文（水 ing 株式会社 副社長）

会長
浦上 逸男（千代田工事株式会社 部長）

事務局
岩崎 真治（岩崎電気株式会社 課長）

理事
相馬 孝浩（株式会社東芝 參事）

理事
塚田 秋廣（フナテック株式会社 常務取締役）

理事
神子 直之（立命館大学 教授）

理事
大瀧 雅寛（お茶の水女子大学大学院 教授）

理事
落合 隆（月島機械株式会社 担当部長）

理事
山越 裕司（株式会社日本フォトサイエンス 理事）

事務局
谷口 康夫（センテリアル光源株式会社 室長）
浄水プロセス改善のための紫外線照射法の適用について

シンエネルギー研究所所長 秋田大学名誉教授 菅原 拓男

近年、遊離塩素に抵抗性を持つクリプトスポリジウムが紫外線によって不活性化することが明らかとなり、紫外線殺菌法が、改めて浄水プロセスの改善策として注目されている。この新しい動きは、1970年代末から流通系紫外線殺菌法の可能性を指摘してきた私にとって新しい喜びである。

本誌覧者には申し上げるまでもないことがあるが、流通系紫外線殺菌装置が産業界に注目されるようになったのは1980年代以降である。まず超純水製造プロセスに導入され、その後、純水循環利用プロセス開発のための主要素として急速に応用分野が広がっていった。この経緯から伺われるように、紫外線照射による殺菌は、とくに通過度の高い水に対して有効である。それだけに、この技術を浄水プロセス改善、ときにろ過後の消毒操作として適応させるようとする試みは当を得たものと言えよう。その場合、どんな技術的問題を解決すべきかを考えた時み合いである。

さて、流系処理の設計は処理工学分野の大きなテーマの一つであるが、熱エネルギーならぬ光エネルギーを利用する場合はその反応速度と対流及び拡散速度をどう関係付けるかが難しい。吉村研究者であるが、私共が1981年、化学工学英文誌に発表した二つの論文「枯草菌胞子の紫外線照射による不活性化速度」、「低圧水銀灯照射下での流系群状殺菌装置特性」を紹介しながら、そこで得た結果をもとにして今後とも必要な技術的側面の考え方を述べる。

最初の論文では、不活性（＝殺菌）速度の定式化にあたって、放射線分子生物学分野で用いられている標的論を基礎とし、加えて菌群には少量ながら活性の異なる（耐性の強い）ものが常に存在する、と仮定した。そして、紫外線照射波長分布の影響を詳細に調べ、利用できる紫外線ランプの中では低圧水銀灯（254nm光）が不活性化に対して最も効率が良いこと、このとき、不活性化速度は誘導期を経た後、みかげ1次反応として変える、ということを明らかにした。次の論文では、低圧水銀灯が発する254nm光は拡散性の角度分布を有していることに注意すること、また、二層管状部を層流状に流れると、各管にいる枯草菌胞子が紫外線照射を受けるとき、反応場はいわゆるマクロ流体（macrofluid）の扱いができることを示した。そして、低分子を扱う熟化学反応としては流線型と近似できる層流反応器も、反応率を殺菌率99.9%以上を達成するには高すぎない紫外線殺菌装置においては、装置出口での殺菌率の予測にあたって層流速度分布の影響を詳細に調べることが必要、ということを指摘した。

これらをもとに考えると、クリプトスポリジウムを対象とした場合においても、まずはその不活性化に及ぼす照射紫外線波長分布の影響を調べて光源の選択を決めるべきである。引き続いて、処理水の通過率データをもとに殺菌装置形状・容量と流れ方式を決定すべきであるということが指摘できるよう。なお、水の透過率が高い場合、光源の配光特性と細心の注意を払う、また流れの短絡路ができないように設計することによって、スケールアップが比較的容易に行えることも、紫外線照射法の有利な点であることを付記する。

最後に、小規模廃水処理の場合であるが、管理長期終処分場における浸出水処理の最終段階に紫外線殺菌法を導入している例を紹介したい。宮城県環境保全センターでは処分場下流のビオトープを守るために、300m³/dayの浸出水を、処理の最終段階で塩素消毒に代えて紫外線殺菌を行うことによって、大腸菌群を下水処理レベルとして放流している。廃水とこれ、通過度が高ければ紫外線照射法が流し消毒に有効という訳である。
新水道ビジョンにおける紫外線処理への期待

厚生労働省では、平成16年の水道ビジョン策定から約9年が経過し、人口減少社会の到来や東日本大震災の経験など、水道を取り巻く状況に大きな変化が生じることから、平成25年3月に新水道ビジョンを策定したところである。

新水道ビジョンにおいては、水道の50年、100年先を見据え、安全、強靭、持続の3つの観点から取り組む方向性を示している。そのうち、「法的な水の供給は確保されているか」といった観点から、クリプトスポリジウム等の耐塩素性病原生物の対策（以下、クリプト対策という。）の課題を取り上げている。全国の水道施設においては、クリプトスポリジウム等の汚染が懸念されている水源を利用しているにもかかわらず、必要な修繕が行われていない施設が今なお多く残されている状況であり、毎年実施している厚生労働省の調査結果でも明らかにされている。

平成24年3月現在における全国の浄水施設（表流水、伏流水、浅井戸又は深井戸を水源とし、全量浄水処理以外の施設）の調査対象施設20,124施設のうち、水道原水のクリプトスポリジウム等による汚染のおそれがある施設（予防対策の必要がある施設）は7,120施設となっており、このうち2,413施設は、対策を検討中（いわゆる未対応施設）としており、そのうち22.4%という割合である。これについては、未対応施設の割合が約47%であったので、その割合は減少傾向にある。

また、クリプト対策が未実施の施設は、簡易水道等の小規模な施設によるものが多いため、給水人口ベースでは現在給水人口（約124,817千人）のうち、未対応となっている人口は約3,662千人であり、未対応人口割合は約2.9%である。この割合は、平成19年度に約5.0%であったので、未対応給水人口の割合についても、年々減少傾向にある。

クリプト対策未対応の施設は、簡易水道等の小規模な施設が多く、簡易水道が1,576施設（平成23年度未現在）であり、未対応施設全体の65%を占めている。（※）

施設基準については、平成19年3月の「水道施設の技術的基準を定める省令」の改正により、クリプト対策として新たに紫外線処理設備を位置づけている。これにより、水道事業者又は専用水道施設者による施設対策のパリアーエーションが広がった。紫外線処理が特長は、ろ過施設を新たに整備することに比べて簡易に対応できる、特に水道水源が比較的清浄である場合には、複雑な処理工程を必要とせず、コスト面や維持管理面で優位性が高い。

また、地方公共団体が整備する場合においては、国庫補助制度の活用も可能になったことから、国としてもクリプト対策の推進となる紫外線処理施設の整備に向けて継続的に支援しているところである。

紫外線設備の普及については、知見の蓄積により、既存導入実績が徐々に積み重ねられているところである。しかし、ケーススタディで検討した様に、財源と人材の確保が非常に厳しい状況である。

紫外線設備は、多くの施設で行われる凝集沈殿・ろ過の処理工程とは異なる処理機構を備えていることから、設備の交換や故障・不具合の対応が適切に行われなければ、設備の継続的運用が困難となる。

新水道ビジョンでは、クリプト対策については、施設整備の必要性に加え、財源と人材、先進技術の開発など、設備導入後の体制も含めた多面的な面から、全体のレベルアップを図る必要性を示している。紫外線設備は、平成19年以降に導入された施設の一部として取り替えれると考えるべきもので、今後も継続的なメンテナンスを考慮した適時換算のため、水道事業者等による適切な管理体制、技術レベルの高化に加え、民間企業も含め、設備のアフターサービスの充実強化が不可欠となる。また、その面でのコストダウンや機器・部品の調達や適切な保守体制が求められる。さらに、導入先としてのニーズが高まることが施設の点検をしない場面での維持管理において、水道事業の広域的な連携を視野に入れるつつ、官民あわせての体制づくり、汎用性の高い備品品の普及など、多様なサービスレベルが要求されることとなる。将来も見据え、紫外線設備に関わる人材と技術の充実度を高く維持し、持続的に水の安全に寄与する効果的な水処理工法として、発展することを期待する。

（※）施設数等の数値は、平成19年度及び24年度水道関係担当者会議（厚生労働省）資料から抜粋
1. 水道のクリプト対策としての紫外線照射と
渦度管理に関するQ＆A
（日本水環境学会紫外線を利用した水処理技術研究
委員会）作成

平成25年2月27日にワークショップ「水道のクリ
プト対策としての紫外線照射と渦度管理について考える」
（日本水環境学会紫外線を利用した水処理技術研究委員会
／水道技術研究センター共催）が開催された。

水道のクリプト対策としては、厚生労働省の「水道に
おけるクリプトスピロジム等対策指針」に、各管出
口渦度を0.1度以下を維持することが示されているが、現
在でも対応が難しいという事業体の存在もあり、その対
応策が検討されている。その一つが紫外線の導入である
が、特定の紫外線によるが地表水以外に限定されていることもあり、完全な対応策とはなっていない。このワークショップではクリプト
の現状、管理の問題点を確認するとともに、渦度管理と
紫外線照射の役割に関して議論したものである。

ワークショップ後のアンケートの集計結果によると、
水道事業体をはじめとした多くの参加者から、「クリプト
スピロジムや渦度管理について知らない情報が多く、
参考になった」という感想とともに、「このような情報
発信が足りないのではないか。もっと情報を発信して欲
しい」とのご指摘が多い寄せられた。

このため、「日本水環境学会紫外線を利用した水処理技
術研究委員会」において、どのような情報発信が最適か
を検討した結果、「基本的なことから最新の情報を含めた
Q＆Aを作成し、できるだけ多くの方々に情報提供を行
うのが良い」との結論に至った。そこで、日本水環境学
会紫外線を利用した水処理技術研究委員会は、「クリプト
スピロジム及び渦度管理に関するQ＆A」を新たに
作成した。JWRCでは、それを平成25年9月13日付の水
道ホットニュース第381-3号に掲載して会員に配布して
いる。以下にその内容を掲載する。

<table>
<thead>
<tr>
<th>No.</th>
<th>質問</th>
<th>回答</th>
<th>参考URL</th>
</tr>
</thead>
</table>
| 1 | クリプトスピロジム症（ジパルシ
ア）とは、どんな
症状ですか？ | 厚生労働省のホームページには、次のように記載されています。
クリプトスピロジム属原虫（Cryptosporidium spp.）のオーシストが経口摂取する
ことにによる感染症で、潜潜期は4〜5日ないし10日程度と考えられ、無症状のもの
から、食欲不振、嘔吐、腹部痛、下痢などなるものまで様々である。
患者の免疫力が低下であれば、通常は数日間で自然治癒するが、エイズなどの
各種の免疫不全状態にある場合は、重篤な感染症（急性胸痛症）があり、1日3〜5
L、時に10Lを超える下痢によって死亡することもある。 | 厚生労働省HP
http://www.mhlw.go.jp/tgy/yuka/kenkou/kekaku-
kansenshou1/01-05-04.html |
| 2 | クリプトスピロジムをどれくらい
飲んだら感染しま
すか？ | 猪肉発売0330006号には、次の通り記載されています。
クリプトスピロジム１個を経口摂取したときの感染効率は4〜16%で、ジパルシア
亜相は2%と計算されており、いずれも感染力の強い病原体である。
1000個なら100%感染、30個なら20%の人が感染したと報告されています。 | 厚生労働省健康調査0330006号、水道における指導及びクリ
プトスピロジム等の検出方法について（平成13年3月30日）
http://www.mhlw.go.jp/topics/bukyoukyoku/kenkou/suido/kikkanr
/id/ks-0330006.pdf |
| 3 | 浴水中のクリプト
スピロジム濃度
について、基
準値は設定され
ているのです
か？ | 水質基準項目（50項目）、水質管理目標設定項目（27項目）及び
基準値設定項目（48項目）のいずれにもクリプトスピロジム等に関する基準値は設定されてい
ません。また、対策指針においてある、浴水中的クリプトスピロジム濃度は特定に設定されてい
ません。ただし、水道法条文の一では、浴水により供給される水の要件として、次の通り記
載されています。
「病原生物に汚染され、又は病原生物に汚染されたことを疑わせるような生物もし
4. クリプトンソルボン類による処理水を含む液体の処理には、どのような処理装置が適しているのか？
「水質基準の見解書等について（案）」では、次の通り記載されています。
「水質基準の見解書等について（案）、厚生労働省（平成15年4月20日）」

5. クリプトンソルボン類の検出方法や検出限界値はどのように定められているのですか？
「水質基準の見解書等について（案）」における検出方法及び検出限界値の記載は以下の通りです。

6. 元波のクリプトンソルボン類濃度について、濃度や検出方法、報告方法はどのように定められているのですか？
「水質基準の見解書等について（案）」における検出方法及び検出限界値の記載は以下の通りです。

7. クリプトンソルボン類に伴う污染が検出された場合に、どのような処理方法が規定されていますか？
「水質基準の見解書等について（案）」における検出方法及び検出限界値の記載は以下の通りです。

8. 表流水質基準に対する処理方法について、どのような処理方法が適用されるのですか？
「水質基準の見解書等について（案）」における検出方法及び検出限界値の記載は以下の通りです。

9. 対策指針について、どのような処理方法が適用されるのですか？
「水質基準の見解書等について（案）」における検出方法及び検出限界値の記載は以下の通りです。
10. 全国の処水場で、どの程度の対策が進んでいるのですか？

厚生労働省の調査では、以下のよう記載されています。
- 河川調査（対象に含むが）で、全国約半数のうち、80％にあたる1億2400万トンが、クリスプスホルム処理を用いた処理が行われています。
- これを対象とする処理設備の必要レベル（3,000kL/日）および対象内（4,051kL/日）での対応完了率は、それぞれ42％（1,250kL/日）、84％（4,049kL/日）となっています。

（平成24年8月末現在）

11. 累積水温が0℃以下で決まっているのは、どういう意味があるのですか？

累積対策で疑問が懸念されているのは、0℃以下という限界値と、以下の通り記載されています。
- 総合水道施設専門家会議以降は、クリスプスホルム処理で発見された問題である。
- ミュールヒルシステムにおいて、公衆衛生上のリスクの観点から、この温度が適当であると考えられている。

なお、業務の実行方法により処理されているが、処理においては、適切な対策のため適切なレベルとされる。

（平成24年2月現在）

12. 累積水温が0℃を超えるとどうなるのですか？

累積調査で、0℃を上回った時点で、処理施設の必要レベル（191kL/日）が設定されている。

- 累積水温が0℃を超えると、生農協が対応する必要があると考えられる。

（平成24年2月現在）

13. 累積对外排処理のクリスプスホルム処理の実効性をどのように見ていますか？

累積対策実施状況の、クリスプスホルスに取り組むための取扱いの違いや、対策を下げる場合で、実績が向上することを期待しています。

- 累積水温が2℃を超えると、効率が悪くなると考えられている。

（平成24年2月現在）

14. アメリカでの海洋汚染では、どのような対策をしていますか？

WHOsは、参考書（Reference Level of Acceptable Risks）の指定により、処理水の品質を改善するためのガイドラインを提示しており、クリスプスホルスのFLYは10×1000として、適切な処理水の処理を行っている。

一方、国際環境保護庁（USEPA）では、飲料水の微生物汚染リスク（1年間）に占めるリスクが、10×1000の程度であることを示し、実績が劣ると、処理水の品質を改善するためのマニュアルを提示している。

なお、飲料水の飲料水汚染のリスク（1年間）に対する処理水の品質を検査するため、実績が劣ると、1年間30mmの水を飲用することでクリスプスホルスが検出されないことを確認する必要があると試験されています。

15. 一般的に、水道水（飲料水）においては、どの程度クリスプスホルスが検出されるのですか？

国内の水道水（飲料水）におけるクリスプスホルスの検出率は、47%（1400カ所）で検出されている。

- 処理水の品質が劣ると、処理水が悪くなると、処理水の品質が劣ると、クリスプスホルスが検出されるなどのリスクがあると指摘されています。

（平成24年2月現在）

16. 表層水のクリスプスホルスに含まれているのか？

すべてのクリスプスホルスに含まれているのか？

- 検出されているのは、特異体質のうち、3種類のクリスプスホルスに含まれている感染性があると報告されています。

（平成24年2月現在）

17. 多いところでは水道水（飲料水）のクリスプスホルスに含まれているのですか？

最大3.700g/100L、検出された報告事例が、農薬残留から水の検査が検出されている場所では多数検出される傾向があります。

（平成24年2月現在）

18. どのようにで表層水のクリスプスホルスに含まれているのですか？

水道水が低い場合、または数値が増大した場合にクリスプスホルスの検出が増大する傾向があります。

- 水温低下により、クリスプスホルスの活性が低下することにより、クリスプスホルスの検出が増大する傾向があります。

（平成24年2月現在）

ニュースレター No.7 | 05
<table>
<thead>
<tr>
<th>No.</th>
<th>質問</th>
<th>回答</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>急速過濁法によるクロノトリオウィムの除去率について、国内外の調査事例で実績が報告されているか？</td>
<td>急速過濁法によるクロノトリオウィムの除去率について、国内外の調査事例で実績が報告されている1,2)。これらは報告等を受けて、WHOでは2.0ng、USEPAでは3.0ngの除去率を示しています3,4)。</td>
<td>1) 平田他、「クロノトリオウィムと水処理」用水と排水、Vol.44 No.4 pp.304-312(2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4) LT2ESWTR Implementation Guidance p.77 Table 3-3: Suggested cryptosporidium removal credit towards LT2ESWTR requirements for well-run water treatment plants</td>
</tr>
<tr>
<td>20</td>
<td>どの程度状況で、クロノトリオウィム摘出率が低下する可能性があるのですか？</td>
<td>①急速過濁法 従来の急速過濁法が、急速過濁法導入後には急速過濁法導入後には過濁法が有効であり、急速過濁法の導入は貢献を上げる事が報告されている。</td>
<td>水道におけるクロノトリオウィム等対策指針 (http://www.mhlw.go.jp/topics/bulyoku/kenkou/suido/kikikanryu/db/ks/0300005.pdf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>②逆送排水の再利用 従来の急速過濁法が、急速過濁法導入後には過濁法が有効であり、急速過濁法の導入は貢献を上げる事が報告されている。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>③遺伝子型貯蔵、検出箇所等の操作因子が不適切であった事例、過濁法の変化を急速過濁法に伴う変化を示すものである、急速過濁法の実績が低下する可能性がある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>水道におけるクロノトリオウィム等対策指針 (http://www.mhlw.go.jp/topics/bulyoku/kenkou/suido/kikikanryu/db/ks/0300005.pdf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>水道におけるクロノトリオウィム等対策指針 (http://www.mhlw.go.jp/topics/bulyoku/kenkou/suido/kikikanryu/db/ks/0300005.pdf)</td>
</tr>
<tr>
<td>21</td>
<td>水道水原水に対して急過濁（急過濁法）を適用している場合、原水にどのような程度のクロノトリオウィムが残るのですか？</td>
<td>一般に急速過濁によるクロノトリオウィム除去率は、2.5〜3.0ngとされている。例えば、原水10L中1個のクロノトリオウィムが検出された場合、10 x 10^(-3)〜1.6 x 10^(-3)個/10L残る可能性があります。これを、換算すると体積30mlとな</td>
<td>1) 水道におけるクロノトリオウィム対策指針等に関連する質問回答集（平成14年2月） (http://www.mhlw.go.jp/shingi/2002/03/d/s0904_467.pdf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) 平田他、原水汚染の検討結果、第4回日本水環境学会シンポジウム、181-182 (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) 水道水原水に対するクロノトリオウィムの検査、水道水協会雑誌第38卷第10号、2007年6月号、29-31、2007</td>
</tr>
<tr>
<td>22</td>
<td>水道水でクロノトリオウィムが検出されることがあらうのでですか？</td>
<td>平成25年2月現在で26件の事例が報告されています。</td>
<td>平成24年度全国水道関係者会議資料、(表4-4) (http://www.mhlw.go.jp/topics/bulyoku/kenkou/suido/tenkousya/2012/02/02-0805.pdf)</td>
</tr>
</tbody>
</table>
25 噴水水原水に対し紫外線処理でクリーンスイッチを切り替える場合、適用は影響しますか？

2. 紫外線照射装置 JWRG 基準の認定状況

水道技術研究センターでは、紫外線照射装置が求められる一定水準以上の性能及び品質を具体的に判断する基準として、「紫外線照射装置基準 JWRG 技術審査基準」を制定し、平成 20 年 4 月より適合認定基準を開始しています。

平成 25 年 8 月現在、低圧紫外線ランプ照射装置の認定状況は、認定者数 17 企業、認定数 67 件、認定装置の型式数 143 型式となっている。また、低圧ランプの認定装置を処理水量別にみると、1,000m³ / 日未満が 29 型式、1,000m³ / 日以上～10,000m³ / 日未満が 80 型式、10,000m³ / 日以上が 34 型式である。

中圧紫外線ランプ照射装置については、認定者数 6 企業、認定数 16 件、認定装置の型式数 27 型式となっており、処理水量別では、5,000m³ / 日未満が 2 型式、5,000m³ / 日以上～50,000m³ / 日未満が 20 型式、50,000m³ / 日以上が 1 型式である。
３．紫外線照射装置の導入状況

水道技術研究センターでは、日本紫外線水処理技術協会 (JUVA) の会員企業の協力を得て、我が国の水道における紫外線照射装置の導入状況について調査を実施している。

平成25年3月末現在の調査結果を図2、図3に示す。なお、この集計結果は契約消段階及び工事中の装置を含んでいる。

図2は紫外線照射装置の累積導入件数、累積計画処理水量を示したものである。浄水プロセスへの適用においては、累積導入件数は224件、累積計画処理水量は約820,000m³/日となっている。膜ろ過洗浄排水等の排水プロセスへの適用においては、累積導入件数は8件、累積計画処理水量は約48,200m³/日で、平成19年度以降、ほぼ横ばいとなっている。

図3は紫外線照射装置の導入件数を計画処理水量別に示したものである。浄水プロセスへの適用では、1,000m³/日未満は108件、1,000m³/日以上～10,000m³/日未満は96件で、小規模浄水施設への導入が中心となっている。また、排水処理プロセスへの適用では、1,000m³/日未満は4件、1,000m³/日以上～10,000m³/日未満は2件である。

（参考）地表水を対象とした米国Los Angeles Aqueduct Filtration Plantの紫外線処理設備

ロサンゼルス市では、約227万m³/日の紫外線消毒設備を建設中。2014年4月頃、本格稼働予定。ニューヨーク市に次いで米国で第2位の規模。なお、下の写真上部の池は、覆蓋のない配水池である。（一部をShade Ballでカバーしている。）

図2 紫外線照射装置の導入状況
（平成25年3月末現在）

図3 紫外線照射装置の導入状況（処理水量別）
（平成25年3月末現在）
1. はじめに

水の消毒処理の目的は、水中の病原微生物の濃度を安全なレベルまで下げるることである。理想的には病原微生物濃度をゼロにすることが望ましいが、現実的には不可能であり、安全であろうと考えられる濃度レベルまで下げることが必要となる。消毒処理装置を求める性能は、このレベルをどの位置に設定するかによって決まる。では安全なレベルとはどうやって決められるのであろうか。ここではその考え方の基本となるリスク評価（risk assessment）について説明し、その適用例として浄水処理に必要となるクリプトスポリジウム除去率を推定してみた。

2. リスク評価の手順

リスク評価は元々化学物質の危険性について評価するための手法であるが、この方法を病原微生物の危険性評価に適用し、基準の策定や消毒装置の要求性能に使われている。この手順は次のようになる。

① 問題とすべき病原微生物を定める。
（例、クリプトスポリジウム、ロタウイルス等）
② それらは、どれだけ摂取すれば感染するか。
（用量-反応評価）
③ それらの水中での存在濃度および人への摂取個数の推定。（曝露評価）
④ 感染する確率の算定。（リスク算定）
⑤ 安全と考えられる感染確率を下げるための対策の検討（リスクマネジメント）

上記の①について考えてみれば、我が国で用いられる紫外線消毒は耐塩性病原微生物であり、ほぼ、クリプトスポリジウムを念頭に置けばよいことになる。それでは、このクリプトスポリジウムを前提にして、②～⑤の手順を行っていくことにする。

3. 用量-反応評価

米国並びに日本でも甚大な被害をもたらしたクリプトスポリジウムは、それから数年間の研究データが集積したところもあり、特に米国ではヒトを対象とした感染実験を実施するなど比較的信頼性の高い解析がなされてきた。そのため摂取量と感染確率の関係は比較的良く把握されている。

クリプトスポリジウムの摂取量（プランク）と感染確率の関係は次式（1）の指数型モデルで示されている。この関係をその他の病原微生物も併せて図2に示し、

感染確率 = 1 - exp(-0.00419 × 摂取量) 　　(1)
これから見ると同じ用量（摂取量）であったとしても感染率を比較すると、クリプトスポリジウムはサルモネラ菌よりも高いが、ジルクイアやコレラ菌よりも低いことがなる。ロタウイルスはかなり感染率が高いことがわかる。

4. 暴露評価ならびにリスク計算

ここでは水道を介したクリプトスポリジウムの摂取を考える。そのためには原水中の濃度、処理工事での除去率、各消毒処理での減少率が必要なデータとなる。これらデータを基に、水道水中のクリプトスポリジウム濃度が推定される。さらに水道水の飲用量を合わせれば、ヒトに摂取されるクリプトスポリジウムの個数（摂取量）が推定できる。まずは非常に単純なモデルで考えてみよう。

例えば原水中のクリプトスポリジウム濃度が 1 個/L であるとする。処理工事として一般的な凝集沈殿+急速ろ過すると 99～99.9%（=2.3 log）の除去率が想定されるので、平均値として 99.8%（=2.3 log）としてみる。消毒処理として一般的な塩素ではほとんど減少しない。従って水道水中の濃度は原水濃度に 2.5 log の除去率を考えると、0.0032 個/L（10000L 中に 32 個）となる。

人体に必要な水分量をすべて水道水から摂取すると想定して、リスク評価においては 2L/ 日が一般的に使われる。従ってクリプトスポリジウムの一日あたりの摂取量は 0.0063 個/日となる。この値を上記の式（1）を用いて計算すると一日の感染確率は 0.0000265 となる。

米国 EPA によれば、一般的な許容レベルは年間の感染確率が 0.0001 未満（10^{-4} 未満）とされている。一日の感染確率が毎日続くとした場合の年間の感染確率は、次式（2）にて計算される。

年間確率 = 1 - (1 - 一日確率)^365 (2)

この式で計算すると年間感染確率は 0.0096（=10^{-3}）で、許容できるレベルより 100 倍高いレベルとなっている。この結果から、処理工事（消毒処理を含む）における除去率を上げる対策が必要という判断が導かれる。では、どの程度の対策が必要かを考えてみる。式（2）を使うと、年間確率を 10^{-4} とすれば、許容できる一日あたりの感染確率は 0.0000000273 (= 2.7 × 10^{-7}) と算定される。次に、これに相当する許容濃度は式（1）から 0.0000654 (= 6.54 × 10^{-5}) 個となる。すなわち原水中のクリプトスポリジウム濃度が 1 個/L であれば除去率は 99.997% (= 4.5 log) とされる。このように考えて、原水中のクリプトスポリジウム濃度とそれに応じる必要な除去率の関係が導かれる。これを示したのが図 3 である。

原水中の濃度が高くなると、それに応じて処理工事が必要な除去率を高くしていかねばならないことがわかる。

![図 3 原水中濃度と必要な除去率との関係](image)

既報によれば、原水中のクリプトスポリジウム濃度の最大検出値として 17 個/L が報告されている。この値から図 3 で判断すると、必要な除去率（消毒処理を含む）の除去率は 5.7 log となる。濃度管理の徹底化によって凝集沈殿+急速ろ過の除去率を上げることは可能であるが、必要な除去率には不足することになろう。

ただし上記の計算はかなり単純化した推論となっておりに注意しなければならない。すなわちこれは非平均的な値で考えている場合である。例えば①仮定したクリプトスポリジウム濃度が一年間ずっと続く。②水道水を 生水で 2 L 毎日飲む。という前提を仮定した場合である。そうしたことを考えると、毎日 17 個/L が検出されるこ
とや、水道水を2L毎日生で飲むということは、現状と合わせるとかなり無理がある仮定といえる。
そこで次のような方法で現状に即した評価方法を行うことが提案されている。

5. モンテカルロシミュレーション

原水中のクリプトスポリジウム濃度の変動や、水道水の飲用量のばらつきなどを加味して摂取量を推定する方法の一つがモンテカルロシミュレーションである。乱数（全く偶然的に0〜1間の値を決定する）を使うことにより、ある日のあるヒトのクリプト摂取量を確率的に計算する方法である。これを1000〜10000回繰り返すということは、ある日、あるヒトの摂取量を1000〜10000回コンピューター上にてシミュレートすることになる。この結果から、例えば10000回中9500回の計算で摂取量が10個未満と推定されたとすれば、95%の確率で、摂取量は10個未満であると推定されることになる。これらの見方をすれば、10個以上になる確率は3%（20分の1）の確率なので、まあそういうことは起こらないであろうと推定することができる。

それでは、現時点での収集できるデータを基に、クリプトスポリジウムの摂取量およびリスク評価について、モンテカルロシミュレーションを行ってみよう。

既報31には、全国でのべ120カ所での水道水原水中のクリプトスポリジウムの検出率および検出濃度が示されている。それによると検出率は27%であり、検出された濃度は0.5〜17個/Lとなっている。この調査では原水の採水量が2Lであるため、0.5個/L未満の濃度が不検出と判断されている。そこで、不検出の場合でも0.5個/L未満の濃度を存在すると仮定し、かつクリプトスポリジウム濃度は対数正規分布であると仮定して、平均0.04個/L、標準偏差1.17（浮遊値として）の分布を持つと仮定した。

図4に、仮定したクリプトスポリジウム濃度分布を示した。

次に水道からの飲用量について検討した。400人を対象としたアンケート調査結果を示した既報41から水道水の飲用量は対数正規分布（平均191ml、標準偏差0.54（浮遊値として）が仮定できることが報告されている。この分布を図5に示した。

この2つの分布に従って確率的にある日のクリプト濃度のあるヒトの摂取物質が影響されることを考えると、クリプトのある日の許容摂取個数は、前述の計算から0.0000654（=6.54×10^-6）個であることがわかる。以上の数値を併せて考えると、ある日、ある人には一定のリスクレベルの水を供給するために必要な浄水場でのクリプトスポリジウムの除去率がシミュレートできる。

図5 仮定した一日の水道水飲用量分布

以上の条件にて10000回のモンテカルロシミュレーションを行った。その結果を図6に示す。
図6 必要なクリプトスポリジウム除去率のモンテカルロシミュレーション結果（10000 回試行）

この図は10000回試行した結果から、累積度数の示す確率で、どの位の浄水除去率（対数値）が必要なのかを示すものである。0.5（=50%）の確率で浄水除去率は2 log 程度（=99%程度）が必要と推定されたことがわかる。これは言い得るから、99%の除去率で運転管理していれば50%の確率で安全性能を担保できないという推定になるということである。当然、これでは安全管理とは不十分であろう。

では3 log (=99.9%)除去率はどうかというと、この運転管理では、安全性が担保できる確率は76%。すなわち24%（ほぼ1/4程度）の確率で担保できない事態が予想される。凝集沈殿＋急速ろ過ごの除去率が3 log とすると24%の確率で、安全性が担保できないという推定となる。

一般的には全体の95%をカバーする推定値を採用する。そうすれば安全性を担保できない可能性は5%のみ（20分の1の確率）となる。この推定値は図に示されるように4.2 log (=99.994%)の除去率となる。この除去率を管理目標とするためには、クリプトスポリジアムを除去するための付加的な処理が必要であると結論することができる。

6. まとめ

リスク評価の手法を用いることによって、ある条件でのリスク（危険性）が推定されるだけでなく、必要となる対策レベルについても推定することができる。今回、実際の報告データを基にして行った単純なモデルによるリスク評価の結果では、許容レベルに必要な浄水除去率は凝集沈殿＋急速ろ過ご法では対応できないことが推定された。さらにクリプト存在濃度とヒトの水道飲料量を分布に従うとして、確率的にリスクを計算するモンテカルロシミュレーションを実行した結果でも、無視できない確率で凝集沈殿＋急速ろ過ご法では対応できない状況となりることが推定された。ただし今回用いたクリプト存在濃度のデータは、一つの原水について中長期的に経時変化を追ったものではなく全国平均的な変動、ばらつきをまとめた形で反映したものである。ある原水についてはの経時的なばらつきを示すデータが揃えば、よりその場に合った信頼性の高い推定が可能となると考えられる。

参考文献
1) C.N.Haas et al. (1999) Quantitative microbial risk assessment, John Wiley & Sons, Inc.
2) 藤又明子ら（2006）全国データによる浄水場原水・浄水の原水汚染状況と感染リスク評価の試み、東京都健康安全研究センター 研究年報、57，pp.313-318
3) 島田直裕ら（2013）市における水道原水中の水系感染症ウイルスおよび原虫の存在実態と指標微生物の有効性、水道協会雑誌、82（10）, pp.2-10
4) 矢野一和、保坂三雄、田中愛、大澤雅清他（2000）飲料水についてアンケート調査の結果から～第3 回日本水環境学会シンポジウム講演集
水処理に使われている紫外線光源は、水銀ランプがほとんどである。水銀ランプは発光管の中に水銀を封入し、電極（エミッター）から放光される電子が水銀原子に衝突したとき紫外線を発光する。この発光原理は蛻光管と同じであり、水銀と言う固有の物質が持つ特性を利用しており作られているのが、紫外線ランプと呼ばれる低圧水銀ランプや中圧（高圧）水銀ランプである。

紫外線ランプは使用されている水銀は金属水銀であるため、消化管からほとんど吸収されずに排出されるので、万一ちょっと飲んでも大量でなければ危険はない。しかし、メチル水銀（有機水銀の一一種）は水銀病に代表されるように人の毒性が強く、消化管から吸収され、中枢神経系に障害を生じると共に、生物に蓄積されやすいため、食物連鎖により野生生物へも影響が起こる。

そのため、2001年に国連環境計画（UNEP）により国際的な水銀管理に関する活動が始まり、2002年に世界水銀アセスメントとして人への影響や汚染実態をまとめた報告書が公表され、その後も「Technical Background Report to the Global Atmospheric Mercury Assessment」（2008）や「Global Mercury Assessment」（2013）が公表されるとともに、2009年2月の第25回UNEP管理委員会にて条約の制定に関する合意がなされた。その合意のもとに、2010年から政府間交渉委員会（INC；主催UNEP）が開催され、昨年11月のジュネーブでのINC5において、条文案の合意、条約の名称「水銀に関する水俣条約」の決定および条約の採択・署名のための外交交渉の場所と日程が正式に発表された。そして、昨年10月に熊本市と水俣市でUNEPの外交交渉が開催され、水銀を使った製品の製造を規制する「水銀に関する水俣条約」が採択された。この条約により水銀に関する規制が2020年から実施されることとなった。この条約の中の規制対象として水銀添加製品が第4条及び付属書Aに記載されている。一般社団法人日本照明工業会がまとめたランプに関する規制内容を表1に記載する。これに記載された製品は2020年以降、製造、輸出、輸入が原則禁止となった。つまり、この条約は一般照明用のランプに対する規制であり、紫外線ランプなどの特殊用途ランプは規制対象外である。

また、この条約は批准手続きを経た国が50カ国に達するとその90日後に発効され、2016年の発効を目指し、各国による批准手続きが進められるというものである。

世界的水銀需要量は3,798トン（2005年）であるが、そのほとんどが金採掘のための使用や化学工業における触媒としての用途であり、ランプに使用されている水銀量は総需要量の4%しかないと、また、その中で多くを占めるのは一般照明用の高圧水銀ランプであり、産業用の紫外線ランプに使用されている水銀量はその他の使用目的に比べてとても少ない量である。ランプに使用されている水銀は金属水銀であり毒性の強い有機水銀ではないため、自然環境中へ放出された場合でも、大気や土壌などの自然環境中では主に無機水銀の形で存在している。自浄化や海を中に入り生物に付着するメチル水銀へ変化し、食物連鎖により魚介類へ蓄積されるため、使用しないで済むのであればそれに越した事はない。

この条約を契機に、水銀の有害性が認識されることは良い事であるが、微量の水銀が入った化粧品や石鹸又はクリームは対象外であったり、歯科治療用アマルガムも全面的に禁止とはなっていない。つまり、適切な代替製品がない場合、量的に少なければ今後も使用できる品目があることもある事実である。

紫外線ランプを水の消毒として使用した場合、病原性微生物の有害性と水銀の有害性とのトレードオフの関係となるが、当協会会員企業は、紫外線照射装置を安全に
表1 ランプに関する規制内容

(1) Compact fluorescent lamps (CFLs) for general lighting purposes that are ≤ 30 watts with a mercury content exceeding 5 mg per lamp burner

30W以下の一般照明用コンパクト蛍光ランプ（CFL）で、水銀封入量が5mgを超えるもの
※コンパクト蛍光ランプには電球形蛍光ランプも含みます。

(2) Linear fluorescent lamps (LFLs) for general lighting purposes:
(a) Triband phosphor < 60 watts with a mercury content exceeding 5 mg per lamp;
(b) Halophosphate phosphor ≤ 40 watts with a mercury content exceeding 10 mg per lamp

一般照用直管蛍光ランプ（LFL）で、
(a) 60W未満の3波長蛍光体を使用したもので、水銀封入量が5mgを超えるもの
(b) 40W以下のカルシウムハロ蛍光体を使用したもので、水銀封入量が10mgを超えるもの

(3) High pressure mercury vapour lamps (HPMV) for general lighting purposes

一般照用の高圧水銀ランプ（HPMV）
※メタルハライドランプや高圧ナトリウムランプなどは含みません。

(4) Mercury in cold cathode fluorescent lamps and external electrode fluorescent lamps (CCFL and EEFL) for electronic displays:
(a) short length (≤ 500 mm) with mercury content exceeding 3.5 mg per lamp
(b) medium length (> 500 mm and ≤ 1500 mm) with mercury content exceeding 5 mg per lamp
(c) long length (> 1500 mm) with mercury content exceeding 13 mg per lamp

電子ディスプレイ用冷陰極蛍光ランプ（CCFL及びEEFL）で、
(a) 長さが500mm以下の小サイズのもので、水銀封入量が3.5mgを超えるもの
(b) 長さが500mmを超え1500mm以下の中サイズのもので、水銀封入量が5mgを超えるもの
(c) 長さが1500mmを超える大サイズのもので、水銀封入量が13mgを超えるもの

使用できるための商品作りており、紫外線ランプを適正に使用している限りは水銀がランプの外へ漏洩するとはほとんどない。しかし、今後も二重三重の安全を考慮した製造設計を心掛けける必要がある。また、水銀フリーオランポンについては研究が進められているが、それほど進まない将来には、水銀フリーオランポンを使用した紫外線照射装置が登場するかもしれないが、现状の紫外線ランプは安価で信頼性の高い光源である。現在これ以上のコストパフォーマンスのある光源はないため、これからも安心して「紫外線ランプ」を使用していただきたい。

参考資料：
- (一社) 日本照業工業会 HP http://www.jlma.or.jp/information/20130125UNEP_Suigen.pdf
1. はじめに

日本における表流水以外の水源では、2007年に「水道におけるクリプトスパロジウム等対策指針」の発効により、紫外線処理の適用が認められた効果もあり、レベル3（原水での指標菌検出、原水は表流水以外）でクリプトスパロジウム（以下、クリプトとする）対策が必要な3,069施設の内、1,298施設（42%）が整備されていた。

一方、レベル4（原水での指標菌検出、原水は表流水）では、ろ過設備出口済度を0.1度以下に維持することとしているが、特に中小事業体で人員不足等により維持管理が難しいといった実態がある。また、クリプト汚染の状況によっては、通常処理での対応が不十分な場合がある。

WHOは、参考計画値（Reference Level of Acceptable Risk、単位はDALYs）に基づき、浄水処理レベルの達成目標を10^4DALYsとすることを提案しており、クリプトスポリジウムのDALYsを1.5 x 10^5として適切な浄水処理の実施が必要としている。これを受けて米国では、環境保護庁（EPA）が2006年に「長期第2次表水処理強化規則（LT2ESWTR）」を公表し、2007年に「長期第2次表水処理強化規則実施ガイダンス」を発行した。このLT2ESWTRでは、物理的な除去又は代替消毒が最も有効な処理方法であるとし、原水の汚染レベルにより過処理又は代替消毒を組み合わせたマルチバリアによる対策を推奨している。ここで、代替消毒としては紫外線処理が最も有効な処理方法であるとされたため、公共施設に多大な影響を与えた。

本稿では、クリプト対策の実施状況、浄水処理におけるリスク除去及び不活化効果、クリプトの汚染状況を述べ、最後に表流水を原水とする浄水場のクリプトの課題と対策強化の予案を紹介する。

2. クリプト対策の実施状況

平成24年3月現在のクリプト対策の実施状況を図1に示す（専用水道を除く）。

![図1 クリプト対策の実施状況（上水道＋簡易水道）](image)

レベル4では、既に3,009施設が対策済みとなっているが、中小規模水道事業体に対して、JWRCが実施したアンケート調査では、図2に示すとおり、回答のあった234浄水施設の内、ろ過済度0.1度を超えた浄水施設が34箇所あり、管理に不安を感じている浄水施設が4割弱の90箇所もあるとの回答があった。また、指標菌を検出した浄水施設が8割強の191箇所となており、依然としてろ過済度0.1度以下に維持することが難しく、維持管理に不安を感じている事業体もある。

![図2 中小規模水道事業体のろ過池管理の状況](image)
よって、レベル4においては、クリント対策の強化のために、維持管理のための人員強化、或いは不正を発見するための設備追加を行う必要があることが分かる。一方、通水開始年度別紫外線処理設備の導入状況をみると、図3の通り、「水道施設の技術的基準を定める省令の一部を改正する省令（平成19年厚生労働省令第54号）」が施行された平成19年度以降、クリント等対策として紫外線処理設備の導入が増加している。

一方、追加する設備として考えられる消毒処理のクリント不活化効果は、表2の通り。クリント不活化効果として、オゾンは低温において高いオゾン濃度が必要となり、紫外線処理は、コスト、スペース、副生成物生成、維持管理の面で有利であるとされている。

表2 消毒処理におけるクリント不活化効果

<table>
<thead>
<tr>
<th>消毒処理</th>
<th>log不活化に必要な濃度 (mg min/m)</th>
<th>照射量 (J/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>オゾン</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1℃</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>10℃</td>
<td>4.9</td>
<td>9.7</td>
</tr>
<tr>
<td>20℃</td>
<td>2.0</td>
<td>3.9</td>
</tr>
<tr>
<td>UV</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

4. クリントの汚染状況

氷水原水・水源におけるクリントの汚染実態調査結果を表3に示したが、国内の冷帯の氷水原水がクリントに汚染されており、2010年度時点では27%で原水中にクリントが検出されている。さらに、クリント濃度は0.5～1μg/1Lとなっているが、原水中のクリント濃度が高くなった場合、凝集沈殿は適切なクリント除去率が必要である。国内の調査事例で概ね2～3μg/Lとされている。

表3 クリントの全国実態調査

<table>
<thead>
<tr>
<th>水質調査</th>
<th>水源</th>
<th>クリント濃度</th>
<th>凝集沈殿除去率</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京</td>
<td>江戸川</td>
<td>1.2</td>
<td>50%</td>
</tr>
<tr>
<td>滋賀</td>
<td>大田川</td>
<td>1.0</td>
<td>30%</td>
</tr>
<tr>
<td>福岡</td>
<td>福智川</td>
<td>0.5</td>
<td>40%</td>
</tr>
<tr>
<td>宮城</td>
<td>東北川</td>
<td>1.5</td>
<td>20%</td>
</tr>
</tbody>
</table>

EPAでは、年間感染リスクを10⁻⁴（感染/人/年:1万人、1年当たりに1人未満）に減らすことを目標にしている。国内の公共用河水における大規模なウィルスおよび原虫の存在実態調査結果（表3の2010年度）を基に、
水道経由の感染・健康影響リスクを推定した結果、汚染レベルが高い場合、EPA推奨の許容感染リスクが10⁻⁴感染／人／年以上となるとの報告がある（図4）。

紫外線照射装置の設置位置としては、適切な凝集沈澱ろ過の後に、紫外線処理の追加を推奨する。これにより、クリプト低減効果は、適切なろ過3logに紫外線処理3logが加わり、6logとなり、リスクの分散による安全・安心が確保される。

図4 水道経由の感染リスク推定結果

図5 表流水を原水とする浄水場のクリプト対策

6．おわりに

本稿で、紫外線による水処理の普及・促進を目指す日本紫外線処理技術協会の立場で、表流水におけるクリプトの汚染状況を踏まえた対策強化の一案としてまとめたものである。表流水におけるクリプトの対策は、厚労省の指針である過水浸没度0.1度以下の達成、維持が最も重要であることを承認したい。

参考文献
1) 厚生労働省 健水発第0330005号、水道水中のクリプトスプリジウム等対策の実施についてhttp://www.mhlw.go.jp/topics/bukyoku/kenkou/suido/kikikani/d/ks-0330005.pdf
2) 「我が国の水道における紫外線処理設備の導入状況（全国計、平成24年度末現在）」、 JWRC 水道ホットニュース 第369-2号、水道技術研究センター（2013）
4) EPA、「The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) Implementation Guidance」, August 2007
5) JUVA ニュースレター No.6（2013）
6) JWRC 高崎ら、水道協会雑誌 Vol.81, pp.2-7
7) 浄水技術ガイドライン p.168 (2010)
8) EPA 815-R-06-001, Economic Analysis for
the Final Long Term 2 Enhanced Surface
Water Treatment Rule, pp208-213, (2005)
9) 「進化する米国の浄水処理－長期第2次地表水処理
強化規則実施ガイダンス－（その4）」. JWRC 水
道ホットニュース 第125-2号, 水道技術研究セ
ンター (2008)
10) 日本水環境学会紫外線を利用した処理技術研究委
員会及び水道技術研究センター共催ワークショップ
「水道のクリプト対策としての紫外線照射と濃度管
理について考える」講演資料 (2013)
11) 秋篠道宏他「公共用水域の人畜由来汚染による健康
影響リスクの解明と制御に関する研究」環境保全研
究成果集 (CD-ROM) (2009)
12) 浅見真理：第4回新水道ビジョン策定検討会（平成
24年5月11日）、資料-3安全な水の確保（水道
水質管理の現状と課題） (2012)
施設導入例（浄水施設）

＜施設概要＞
対象施設：N市M水源
計画水量：23,050 m³/日

＜原水＞
対象水：地下水
紫外線透過率：95％以上
濁度：2度以下

＜機器仕様＞
数 量：3基
形式：低圧高出力アマルガムランプ
紫外線ランプ：240 W/本
灯 数：8灯/基
ランプスリープ：石英ガラス
U V モニタ：乾式空間強度計 2台/基
処理能力：14,315 m³/日/基

施設導入例（浄水施設）

＜施設概要＞
対象施設：K市D水源地
計画水量：5,000 m³/日

＜原水＞
対象水：地下水（浅井戸）
紫外線透過率：95％以上
濁度：2度以下

＜機器仕様＞
数 量：2基
形式：内照式
紫外線ランプ：中圧水銀ランプ
ランプ出力：最大2.3 kW
灯 数：1灯/基
ランプスリープ：石英ガラス
U V モニタ：UV強度計 1台/基
処理能力：5,000 m³/日/基
施設導入例（浄水施設）

＜施設概要＞
対象施設：市水源
計画水量：6,000 m³/日

＜機器仕様＞
数 量：2基
形 式：低圧高周波アマルガムランプ
紫外線ランプ：127 W/本
灯 数：5灯/基
ランプスリーブ：石英ガラス
UVモニタ：乾式空気強度計 2台/基
処理能力：5,040 m³/日/基

＜原 水＞
対象水：地下水
紫外線透過率：95％以上
濁 度：2度以下

施設導入例（浄水施設）

＜施設概要＞
対象施設：市水源
計画水量：5,200 m³/日

＜機器仕様＞
数 量：2基
形 式：低圧水銀ランプ
紫外線ランプ：240 W/本
灯 数：3灯/基
ランプスリーブ：フッ素被覆石英ガラス
UVモニタ：乾式強度計 3台/基
処理能力：7,500 m³/日/基

＜原 水＞
対象水：地下水
紫外線透過率：95％以上
濁 度：2度以下
会員リスト

平成 26年 3月現在（五十音順）

正会員

<table>
<thead>
<tr>
<th>会社名</th>
<th>住所</th>
<th>電話</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>アタカ大機株式会社</td>
<td>東京都千代田区元赤坂2-2-6 東京日興ビル</td>
<td>03-3845-8623</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>磯村ショウ工業株式会社</td>
<td>東京都港区虎ノ門1-1-3</td>
<td>03-5932-3828</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>岩崎電気株式会社</td>
<td>東京都中央区日本橋蛎殻町1-4-16</td>
<td>03-3645-9095</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社ウォーターテック</td>
<td>東京都港区芝浦3-16-1 中野商業ビル</td>
<td>03-3456-6795</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>ウシオ電機株式会社</td>
<td>東京都千代田区大手町 2-6-1</td>
<td>03-3642-5644</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社神鋼環境ソリューション</td>
<td>神戸市中央区新港2-4-1</td>
<td>078-232-8111</td>
<td>大阪支社</td>
</tr>
<tr>
<td>神鋼環境メンテナンス株式会社</td>
<td>神戸市中央区長谷川町2-2-21</td>
<td>078-268-1194</td>
<td>東京支社</td>
</tr>
<tr>
<td>水唯機工株式会社</td>
<td>東京都港区芝浦3-48-16 本社</td>
<td>03-3426-2953</td>
<td>事業管理部</td>
</tr>
<tr>
<td>インテック株式会社</td>
<td>東京都港区芝浦1-7-18</td>
<td>03-6830-9000</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>センターグラフ株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>千代田工事株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>月島工機株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社東芝</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>東洋製水機株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>ドリコレ機械株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社西島製作所</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社西原環境</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社日本フォトサイエンス</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社扶桑建設工業</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>フナテック株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>前川工業株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>メタウォーター株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社ヤマモト</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>理水化学株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>06-6845-5111</td>
<td>03-6533-5013</td>
</tr>
</tbody>
</table>

特別会員：民間企業

<table>
<thead>
<tr>
<th>会社名</th>
<th>住所</th>
<th>電話</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNライティング株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>03-3698-9301</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>ヒメジ化成株式会社</td>
<td>東京都港区芝浦2-3-18</td>
<td>03-3698-9301</td>
<td>03-6533-5013</td>
</tr>
<tr>
<td>株式会社フィッシャー・エレクトロニクスジャパン</td>
<td>東京都港区芝浦2-3-18</td>
<td>03-3698-9301</td>
<td>03-6533-5013</td>
</tr>
</tbody>
</table>

特別会員：団体

<table>
<thead>
<tr>
<th>会社名</th>
<th>住所</th>
<th>電話</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>財団法人千葉産業創成会検査センター</td>
<td>東京都港区芝浦2-3-18</td>
<td>03-3698-9301</td>
<td>03-6533-5013</td>
</tr>
</tbody>
</table>

特別会員：個人

<table>
<thead>
<tr>
<th>会社名</th>
<th>住所</th>
<th>電話</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>浅見真隆 大宮雅雅 青木雅子 小林久美子</td>
<td>東京都港区芝浦2-3-18</td>
<td>03-3698-9301</td>
<td>03-6533-5013</td>
</tr>
</tbody>
</table>

入会を希望される場合は、当協会のホームページ（http://www.juja.va.ja/）の入会申込書 PDF をダウンロードしていただき、必要事項をご記入のうえ事務局までお送りください。
[セミナー・講演会への講師派遣を随時受付]

本協会では、紫外線水処理装置・技術の啓蒙活動を積極的に行っており、その一環として紫外線水処理装置および技術に関する講師派遣を行っております。
お申し込みは、メールにて承ります。
（メールアドレス：info@juva.jp）

JUVA技術セミナー

一般社団法人 日本紫外線水処理技術協会
HPアドレス http://www.juva.jp/ 郵便アドレス info@juva.jp